TGF-beta1 causes airway fibrosis and increased collagen I and III mRNA in mice.
نویسندگان
چکیده
BACKGROUND Subepithelial collagen and extracellular matrix protein deposition are important pathophysiological components of airway remodelling in chronic asthma. Animal models based on the local reaction to antigens show structural alterations in the airway submucosal region and provide important information regarding disease pathophysiology. We describe a murine model of peribronchial fibrosis using intratracheally instilled transforming growth factor (TGF)-beta(1) in BALB/C mice that facilitates a mechanistic approach to understanding the cellular and molecular pathways leading to airway fibrosis. METHODS BALB/C mice were intratracheally instilled with either TGF-beta(1) or buffered saline. Airway fibrosis was assessed by light microscopy, hydroxyproline content, and polymerase chain reaction (PCR) for collagen I and III on microdissected airway samples. The lysyl oxidase inhibitor beta-aminoproprionitrile (BAPN) was administered to TGF-beta(1) treated mice to block airway collagen deposition. Airway hyperresponsiveness was also measured after treatment with TGF-beta(1). RESULTS During the 7 days after administration of TGF-beta(1) the mice developed increased subepithelial collagen which could be blocked by BAPN. Increased mRNAs for collagen types I and III were seen in microdissected airways 1 week after TGF-beta(1), and significantly increased total collagen was found in the airways 4 weeks after TGF-beta(1). A detectable increase in airway hyperreactivity occurred. CONCLUSIONS This new model should facilitate detailed study of airway remodelling that occurs in the absence of detectable cellular inflammation, and allow examination of the functional consequences of a major structural alteration in the conducting airways uncomplicated by inflammatory cell influx.
منابع مشابه
AIRWAY BIOLOGY TGF-β1 causes airway fibrosis and increased collagen I and III mRNA in mice
Background: Subepithelial collagen and extracellular matrix protein deposition are important pathophysiological components of airway remodelling in chronic asthma. Animal models based on the local reaction to antigens show structural alterations in the airway submucosal region and provide important information regarding disease pathophysiology. We describe a murine model of peribronchial fibros...
متن کاملTGF-β1 causes airway fibrosis and increased collagen I and III mRNA in mice
Background: Subepithelial collagen and extracellular matrix protein deposition are important pathophysiological components of airway remodelling in chronic asthma. Animal models based on the local reaction to antigens show structural alterations in the airway submucosal region and provide important information regarding disease pathophysiology. We describe a murine model of peribronchial fibros...
متن کاملMycoplasma pneumoniae infection increases airway collagen deposition in a murine model of allergic airway inflammation.
Mycoplasma pneumoniae (Mp) has been linked to chronic asthma. Airway remodeling (e.g., airway collagen deposition or fibrosis) is one of the pathological features of chronic asthma. However, the effects of respiratory Mp infection on airway fibrosis in asthma remain unclear. In the present study, we hypothesized that respiratory Mp infection may increase the airway collagen deposition in a muri...
متن کاملMice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease.
Transforming growth factor (TGF)-beta1, once activated, binds to its receptors and mediates renal fibrosis via the downstream Smad signaling pathway. We reported here that mice overexpressing latent TGF-beta1 in keratinocytes were protected against renal fibrosis in a model of obstructive kidney disease. In normal mice, both transgenic (Tg) and wild-type (WT) mice had normal renal histology and...
متن کاملGM-CSF increases airway smooth muscle cell connective tissue expression by inducing TGF-beta receptors.
Fibrosis around the smooth muscle of asthmatic airway walls leads to irreversible airway obstruction. Bronchial epithelial cells release granulocyte/macrophage colony-stimulating factor (GM-CSF) in asthmatics and are in close proximity to airway smooth muscle cells (ASMC). The findings in this study demonstrate that GM-CSF induces confluent, prolonged, serum-deprived cultures of ASMC to increas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Thorax
دوره 58 9 شماره
صفحات -
تاریخ انتشار 2003